Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Environ Res Public Health ; 17(23)2020 11 24.
Article in English | MEDLINE | ID: covidwho-945815

ABSTRACT

The coronavirus (COVID-19) pandemic was particularly invasive in Italy during the period between March and late April 2020, then decreased in both the number of infections and in the seriousness of the illness throughout the summer of 2020. In this work, we measure the severity of the disease by the ratio of Intensive Care Units (ICU) spaces occupied by COVID-19 patients and the number of Active Cases (AC) each month from April to October 2020. We also use the ratio of the number of Deaths (D) to the number of Active Cases. What clearly emerges, from rigorous statistical analysis, is a progressive decrease in both ratios until August, indicating progressive mitigation of the disease. This is particularly evident when comparing March-April with July-August; during the summer period the two ratios became roughly 18 times lower. We test such sharp decreases against possible bias in counting active cases and we confirm their statistical significance. We then interpret such evidence in terms of the well-known seasonality of the human immune system and the virus-inactivating effect of stronger UV rays in the summer. Both ratios, however, increased again in October, as ICU/AC began to increase in September 2020. These ratios and the exponential growth of infections in October indicate that the virus-if not contained by strict measures-will lead to unsustainable challenges for the Italian health system in the winter of 2020-2021.


Subject(s)
COVID-19/epidemiology , Pandemics , Seasons , COVID-19/mortality , Humans , Intensive Care Units/statistics & numerical data , Italy/epidemiology
2.
J Clin Med ; 9(5)2020 May 21.
Article in English | MEDLINE | ID: covidwho-327251

ABSTRACT

We statistically investigate the Coronavirus Disease 19 (COVID-19) pandemic, which became particularly invasive in Italy in March 2020. We show that the high apparent lethality or case fatality ratio (CFR) observed in Italy, as compared with other countries, is likely biased by a strong underestimation of the number of infection cases. To give a more realistic estimate of the lethality of COVID-19, we use the actual (March 2020) estimates of the infection fatality ratio (IFR) of the pandemic based on the minimum observed CFR and analyze data obtained from the Diamond Princess cruise ship, a good representation of a "laboratory" case-study from an isolated system in which all the people have been tested. From such analyses, we derive more realistic estimates of the real extent of the infection as well as more accurate indicators of how fast the infection propagates. We then isolate the dominant factors causing the abnormal severity of the disease in Italy. Finally, we use the death count-the only data estimated to be reliable enough-to predict the total number of people infected and the interval of time when the infection in Italy could end.

SELECTION OF CITATIONS
SEARCH DETAIL